A FUNDAMENTAL INVESTIGATION OF THE SYNTHESIS AND CHARACTERIZATION OF UCL₃ AND (NH₄)₂UCL₆ FOR APPLICATIONS OF TRANSURANIC CHLORIDE SYNTHESIS AND CHARACTERIZATION A. L. Hames, T. L. Cruse, J. L. Willit, M. A. Williamson, A. Paulenova # **Overview** - Introduction - Equipment - Procedure - (NH₄)₂UCl₆ Characterization - UCl₃ Characterization - Future Work - Conclusions # Phase Equilibria in Systems Relevant to Pyroprocessing - During electrorefining, contaminants less noble than uranium and transuranics anodically dissolve in electrolyte - Lanthanides, alkali and alkaline earth fission products - There is a buildup of active metal and lanthanide fission products in the molten salt electrolyte - The LiCl-KCl-TRUCl₃ system affects the thermodynamic activity of the chlorides, which affects the TRU-lanthanide separation factor - NpCl₃ will be the first TRU chloride we investigate in the LiCl-KCl system - NpCl₃ is not readily available and must be synthesized for use in the phase equilibria study # Need for Anhydrous Chloride Synthesis - Numerous methods of synthesis for actinides tri- and tetrachloride - Dangerous bi-products • $$\operatorname{AnO}_{2(s)} + 2\operatorname{CCl}_{4(g)} + \operatorname{Cl}_{2(g)} \rightarrow \operatorname{AnCl}_{4(s)} + 2\operatorname{COCl}_{2(g)}$$ - Extremely high temperatures - Carbothermic reduction of AnO₂ to produce AnN - Expensive reagents • $$AnN_{(s)} + 3Pt_{(s)} \rightarrow AnPt_{3(s)} + \frac{1}{2} N_{2(g)}$$ - Residual contaminants - $AnO_{2(s)} + \frac{3}{4} ZrCl_4(LiCl-KCl)_{(l)} + \frac{1}{4} Zr_{(s)} \rightarrow AnCl_3(LiCl-KCl)_{(l)} + ZrO_{2(s)}$ - Explosive hazards - $\operatorname{AnCl}_{4(s)} + \frac{1}{2} \operatorname{H}_{2(g)} \rightarrow \operatorname{AnCl}_{3(s)} + \operatorname{HCl}_{(g)}$ # Synthetic Approach - An or AnO₂ with NH₄Cl - Well-known way of producing anhydrous rare earth chlorides - Previously used for UCl₄ and PuCl₃ synthesis - Favorable synthetic conditions - Low temperature - 350 450 °C - Inexpensive reagents - No contaminants left in product - Such as ZrO₂ - No dangerous bi-products - HCl_(g) is evacuated from the chamber and scrubbed ## **Reaction with Actinide Oxides** 1. $AnO_{2(s)} + 6 NH_4Cl_{(s)} \rightarrow (NH_4)_2AnCl_{6(s)} + 2H_2O_{(g)} + 4 NH_{3(g)}$ 2. $$(NH_4)_2AnCl_{6(s)} \rightarrow AnCl_{4(s)} + 2NH_{3(g)} + 2HCl_{(g)}$$ $\overline{3.} \quad \overline{AnCl_{4(s)}} + \overline{Zn_{(s)}} \rightarrow \overline{AnCl_{3(s)}} + \overline{ZnCl_{(s)}}$ # **Reaction with Actinide Metal** 1. $$An_{(s)} + 6 NH_4Cl_{(s)} \rightarrow (NH_4)_2AnCl_{6(s)} + 4 NH_{3(g)} + 2 H_{2(g)}$$ 2. a) $$(NH_4)_2AnCl_{6(s)} \rightarrow AnCl_{4(s)} + 2NH_{3(g)} + 2HCl_{(g)}$$ b) $$(NH_4)_2AnCl_{6(s)} \rightarrow AnCl_{3(s)} + 2NH_{3(g)} + 2HCl_{(g)} + Cl_{2(g)}$$ 3. $$3 AnCl_{4(s)} + An_{(s)} \rightarrow 4 AnCl_{3(s)}$$ # Equipment - Quartz reaction vessel - Pyrex top sealed with O-ring - Argon glove box - Tube furnace with variac controller - Small scale: - Pyrex reaction vessel - Pyrex top sealed with O-ring - Reagents - Uranium dendrites - Anhydrous ammonium chloride # **Standard Thermal Analyzer** Combines thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) ### • DSC Identifies onset temperatures of phase transitions and enthalpy of the transitions ### TGA • Determines mass loss from the sample Netzsch STA Jupiter 449C # **Procedure** | Product | Temperature (°C) | Hold Time (h) | Notes | |--|------------------|---------------|--------| | (NH ₄) ₂ UCl ₆ | 300 | 30 | | | UCl ₄ | 350 | 10 | Vacuum | | UCl ₃ | 450 | 36 | Vacuum | (NH₄)₂UCl₆ Intermediate Product ### **UCl₄ Product** **UCl₃ Product** # (NH₄)₂UCl₆ Results Decomposition of the intermediate occurs at 335 °C | Temperature
Intervals (°C) | 23-255 | 255-335 | 335-590 | 590-675 | |-------------------------------|--------|---------|---------|---------| | Weight Loss
Expected (%) | 0 | 11 | 22 | - | | Weight Loss
Observed (%) | 0 | 10.30 | 21.19 | 6.82 | # Second Heating Cycle of UCl₃ - Onset transition temperature of 855 °C corresponding to UCl₃ melting - UCl₃ disproportionates upon melting: - $4 \text{ UCl}_3 \rightarrow \text{U} + 3 \text{UCl}_4$ - TGA shows major mass loss upon melting corresponding to the UCl₄ sublimation - DSC signal for cooling (not shown) displays small transition around 833 °C which might correspond to residual UCl₃ DSC and TGA in inert atmosphere DSC (blue) TGA (green) # Third Heating Cycle of UCl₃ - Onset transition temperature of 849 °C corresponding to UCl₃ melting - Much smaller transition due to smaller amount of UCl₃ in sample - TGA signal stabilizes after final melting due to the complete sublimation of UCl₄ - DSC signal for cooling (not shown) does not display any additional transitions because UCl₃ completely disproportionated to UCl₄ and U DSC and TGA in inert atmosphere DSC: blue, TGA: green. # **FUTURE WORK** - Further Analysis of UCl₃ and (NH₄)₂UCl₆ - Chemical analysis - XRD - Synthesis of NpCl₄ and NpCl₃ - Synthesis of AmCl₃ - Phase investigation of NpCl₄ and NpCl₃ in the LiCl-KCl system # CONCLUSIONS - Insight into chemistry gained during process feasibility tests - Verified the existence of (NH₄)₂UCl₆ - (NH₄)₂UCl₆ decomposes to UCl₄ at 355 °C - Confirmed UCl₃ product - Synthesis expected to be successful for TRU # **ACKNOWLEDGMENTS** - U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Research and Development Program. - Argonne National Laboratory - Oregon State University ### • Government License Notice The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.